NIHR Oxford Biomedical Research Centre

Enabling translational research through partnership

MENUMENU
  • About
    • About the NIHR Oxford Biomedical Research Centre
    • NIHR Oxford BRC impact
    • Steering Committee
    • Promoting equality, diversity and inclusion in research
    • Current Vacancies
    • Stay in Touch
    • Contact Us
  • Research

        • Research Overview
        • Clinical Research Facility
        • Health Economics
        • Ethics in the NIHR Oxford BRC
        • Medical Statistics
        • Infections in Oxfordshire Database (IORD)
        • 15 Research Themes

        • Cancer
        • Cardiovascular Medicine
        • Digital Health from Hospital to Home
        • Gene and Cell Therapy
        • Genomic Medicine
        • Imaging
        • Inflammation across Tissues
        • Life-saving Vaccines
        • Metabolic Experimental Medicine
        • Modernising Medical Microbiology and Big Infection Diagnostics
        • Musculoskeletal
        • Preventive Neurology
        • Respiratory Medicine
        • Surgical Innovation, Technology and Evaluation
        • Translational Data Science
  • Patient and Public Involvement
    • For patients and the public
    • For researchers
    • More information
  • Training Hub
    • Training Hub Overview
    • Clinical Academic Pathway
    • Internships
    • Pre-doctoral Research Fellowships
    • Senior Research Fellowships
    • Research Training Bursaries
    • Doctoral Awards
    • Post-Doctoral Awards
    • PARC Programme
    • Other funding
    • Leadership Training
    • Useful Links
    • Training and Education Resources
    • Upcoming Training Events & Courses
  • Industry
    • Collaborate with Oxford BRC
    • Who Do We Work With?
    • Events
    • Further Information and Additional Resources
    • Contacts for Industry
  • Videos
  • News
  • Events

News

You are here: Home > COVID-19 > Oxford-led technology to help those at high risk from Covid-19

Oxford-led technology to help those at high risk from Covid-19

16 February 2021 · Listed under COVID-19, Multimorbidity and Long-Term Conditions, Translational Data Science

More people in England at high risk from Covid-19 will get priority access to vaccines thanks to new technology developed by a University of Oxford-led team of researchers that can identify those who may be most vulnerable to the virus.

Research led by Professor Julia Hippisley-Cox in the University of Oxford’s Nuffield Department of Primary Care Health Sciences, with collaborators across the UK, found that there are several health and personal factors which, when combined, could mean someone is at a higher risk from Covid-19. These include characteristics like age, ethnicity and BMI, as well as certain medical conditions and treatments.

The team turned their research into a risk prediction model called QCovid®, which has been independently validated by the Office for National Statistics. It is thought to be the only COVID-19 risk prediction model in the world to meet the highest standards of evidence. 

The work, which was supported by the NIHR Oxford Biomedical Research Centre, was commissioned by England’s Chief Medical Officer, Prof Chris Whitty. Details of the development and validation of the tool were published in the BMJ, and the model has been fully published for transparency at www.qcovid.org.

NHS Digital has now used this model to develop a population risk assessment. The risk assessment predicts on a population basis whether registered patients with a combination of risk factors may be at more serious risk from COVID-19, enabling the government to prioritise them for vaccination, and provide appropriate advice and support.

These individuals will be added to the shielded patient list on a precautionary basis and to enable rapid vaccination.

Protect

This assessment is made possible for the first time by utilising the QCovid® model from the Oxford-led team and emerging evidence about the impact of Covid-19 on different groups and who could be most vulnerable, which means further steps can be taken to protect those most at risk.

Up to 1.5 million patients have been identified to date. Approximately 700,000 will have already been vaccinated as part of the over-70s cohort, and an additional 800,000 adults between 19 and 69 years will now be prioritised for a vaccination. 

Professor Julia Hippisley-Cox

Prof Hippisley-Cox (pictured left) said: “The QCovid® model, which has been developed using anonymised data from more than 8 million adults, provides nuanced assessment of risk by taking into account a number of different factors that are cumulatively used to estimate risk, including ethnicity.

“The research to develop and validate the model is published in the British Medical Journal along with the underlying model for transparency. This will be updated to take account of new information as the pandemic progresses. I’m delighted that less than a year after being funded by the NIHR, the model is now being used to help protect people at most risk from COVID-19.”

Fred Kemp, Deputy Head of Life Sciences at Oxford University Innovation, said: “As a further example of how the University of Oxford is at the forefront of combatting the pandemic, OUI is proud to have supported the development and implementation of QCovid as a highly validated, evidence-based risk prediction tool that will enable prioritised delivery of vaccines to those most in need.”

Deputy Chief Medical Officer for England Dr Jenny Harries said: “For the first time, we are able to go even further in protecting the most vulnerable in our communities. This new model is a tribute to our health and technology researchers. The model’s data-driven approach to medical risk assessment will help the NHS identify further individuals who may be at high risk from COVID-19 due to a combination of personal and health factors. This action ensures those most vulnerable to COVID-19 can benefit from both the protection that vaccines provide, and from enhanced advice, including shielding and support, if they choose it.”

Risk prediction

QCovid® was developed using the QResearch database of anonymised electronic health records, a collaboration between Professor Hippisley-Cox’s team in Oxford and primary care computer systems provider EMIS Health. The model included data from primary care, hospitals, Covid-19 test results and death registries, and was informed by a significant amount of patient engagement.

It is the latest in a series of risk prediction models developed through the collaboration, which are widely used by healthcare practitioners to identify patients at risk of serious illness including cardiovascular disease, stroke, cancer and diabetes.

Commenting on the roll-out, Dr Shaun O’Hanlon, Chief Medical Officer at EMIS, said: “EMIS is proud to have supported this important piece of research, which will enable the NHS to protect more vulnerable people, more quickly, from Covid-19. We thank all of the GP practices who have contributed anonymised patient data to the QResearch database in the 15 years-plus it has been in existence.’

The independent validation from the Office of National Statistics is considered the ‘gold standard’ in quality assurance. The ONS has shown that the model performs in the ‘excellent’ range, and accurately identifies patients at highest risk from Covid-19. This shows the model is robust and meets the highest standards of evidence.

The development of the QCovid® model involved researchers from the universities of Oxford, Cambridge, Edinburgh, Swansea, Leicester, Nottingham and Liverpool with the London School of Hygiene & Tropical Medicine, Queen’s University Belfast, Queen Mary University of London and University College London.

In related work from the University of Edinburgh, the QCovid® model has been validated for use in the Scottish population.

← Oxford University extends COVID-19 vaccine study to children
Oxford study shows high level of readmissions and death after COVID-19 discharge →

Other news

News Categories

News by Month

See all news

Subscribe to the Oxford BRC Newsletter

Keep informed about the work of the Oxford BRC by subscribing to our Mailchimp e-newsletter. It is produced several times a year and delivers news and information about upcoming events straight to your inbox.

Subscribe Now

Feedback

We’d love to hear your feedback. Please contact us at [email protected]

Oxford BRC on Social Media

  • Bluesky
  • Facebook
  • LinkedIn
  • Threads
  • Twitter
  • YouTube
  • Data Control and Privacy
  • Accessibility
  • Our Partners
  • Disclaimer
  • Contact

Copyright © 2025 NIHR Oxford Biomedical Research Centre