NIHR Oxford Biomedical Research Centre

Enabling translational research through partnership

MENUMENU
  • About
    • About the NIHR Oxford Biomedical Research Centre
    • NIHR Oxford BRC impact
    • Steering Committee
    • Promoting equality, diversity and inclusion in research
    • Current Vacancies
    • Stay in Touch
    • Contact Us
  • Research

        • Research Overview
        • Clinical Research Facility
        • Health Economics
        • Ethics in the NIHR Oxford BRC
        • Medical Statistics
        • Infections in Oxfordshire Database (IORD)
        • 15 Research Themes

        • Cancer
        • Cardiovascular Medicine
        • Digital Health from Hospital to Home
        • Gene and Cell Therapy
        • Genomic Medicine
        • Imaging
        • Inflammation across Tissues
        • Life-saving Vaccines
        • Metabolic Experimental Medicine
        • Modernising Medical Microbiology and Big Infection Diagnostics
        • Musculoskeletal
        • Preventive Neurology
        • Respiratory Medicine
        • Surgical Innovation, Technology and Evaluation
        • Translational Data Science
  • Patient and Public Involvement
    • For patients and the public
    • For researchers
    • More information
  • Training Hub
    • Training Hub Overview
    • Clinical Academic Pathway
    • Internships
    • Pre-doctoral Research Fellowships
    • Senior Research Fellowships
    • Research Training Bursaries
    • Doctoral Awards
    • Post-Doctoral Awards
    • PARC Programme
    • Other funding
    • Leadership Training
    • Useful Links
    • Training and Education Resources
    • Upcoming Training Events & Courses
  • Industry
    • Collaborate with Oxford BRC
    • Who Do We Work With?
    • Events
    • Further Information and Additional Resources
    • Contacts for Industry
  • Videos
  • News
  • Events

News

You are here: Home > Genomic Medicine > TB’s genetic “family tree” may hold the key to tackling outbreaks quickly and effectively

TB’s genetic “family tree” may hold the key to tackling outbreaks quickly and effectively

15 November 2012 · Listed under Genomic Medicine, Modernising Medical Microbiology and Big Infection Diagnostics

NEW genetic sequencing techniques can map the “family tree” of a Tuberculosis (TB) outbreak allowing the spread of disease to be tackled quickly and effectively.

Researchers, led by the NIHR Oxford Biomedical Research Centre, the Health Protection Agency in Birmingham and the Wellcome Trust Sanger Institute in Cambridge, have pioneered the whole genome sequencing (WGS) method through a study of 254 TB cases in the Midlands.

The method, published online in the Lancet Infectious Diseases (15.11.12) [Walker TM, IP CLC, Harrell RH, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study  http://dx.doi.org/10.1016/S1473-3099(12)70277-3] compares the genetic information from the TB germs of each patient to determine with a high degree of accuracy whether cases are isolated, or if there is an outbreak of the potentially fatal disease.

By genetically mapping the spread of infection it can also show who has given the disease to whom and help identify potential “super spreaders” before any information has been collected from patients.

Armed with this data, public health bodies can assess how much transmission is taking place and thereby target efforts quickly, efficiently and effectively to where it is needed most.

Lead investigator Professor Tim Peto, at the NIHR Oxford Biomedical Research Centre, a partnership between the Oxford University Hospitals NHS Trust and the University of Oxford, said:  “This will result in a major rebalancing of the public health approach to the spread of TB.

“It will make them far more focused on where the problems are and make them more efficient and effective.”

Co-investigators Drs. Grace Smith and Philip Monk, senior members of the HPA TB control programme, described the research as a “revolution in TB control”.   Dr Monk added “at present you have to put a lot of work into contact tracing to find links between cases. This is extremely difficult particularly when people often lead such chaotic lives.

“By identifying so-called super spreaders we can target our work effectively. In terms of the public health management of TB, that is a major paradigm shift.”

TB cases in the UK remain relatively low. However, the number of cases has risen slightly over the past decade, with 8,963 cases reported in 2011 (source: Health Protection Agency).  Many cases are isolated, but there have been numerous outbreaks across the country over recent years.

Current practice sees public health bodies depend on people with TB volunteering information about their movements, family and friends, to identify further cases and piece together the potential spread of the disease.  Until now this approach has been aided by limited genetic typing techniques that are only able to rule out transmission between cases, and not reliably confirm transmission.

The process of identifying outbreaks has therefore been time consuming, relying on the information people are able to give and occasionally throwing up “false connections”, leading to wasted effort by health bodies.

By sequencing the whole genome the new technique allows linking of cases and the mapping of outbreaks, and has the ability to predict the existence of undiagnosed cases.

WGS is used to measure the genetic distance between TB strains to accurately link cases before any additional patient data has been collected. By analysing the evolving pattern of mutations it is possible to work out the direction of transmission and identify potential “super-spreaders”.

Prof Peto said: “This work gives a level of certainty you could never have before about who belongs to a transmission chain.

“The information is in the germ, and it speaks for itself.”

 

← High speed bench-top sequencing set to change the face of infection control
New understanding of craniosynostosis will help families and treatment centres →

Other news

News Categories

News by Month

See all news

Subscribe to the Oxford BRC Newsletter

Keep informed about the work of the Oxford BRC by subscribing to our Mailchimp e-newsletter. It is produced several times a year and delivers news and information about upcoming events straight to your inbox.

Subscribe Now

Feedback

We’d love to hear your feedback. Please contact us at [email protected]

Oxford BRC on Social Media

  • Bluesky
  • Facebook
  • LinkedIn
  • Threads
  • Twitter
  • YouTube
  • Data Control and Privacy
  • Accessibility
  • Our Partners
  • Disclaimer
  • Contact

Copyright © 2025 NIHR Oxford Biomedical Research Centre