NIHR Oxford Biomedical Research Centre

Enabling translational research through partnership

MENUMENU
  • About
    • About the NIHR Oxford Biomedical Research Centre
    • Activities during COVID-19
    • Strategic Partnership Board
    • Steering Committee
    • Promoting Equality, Diversity and Inclusion in Research
    • Current Vacancies
    • Contact Us
    • Stay in Touch
  • Research

        • Research Overview
        • Clinical Research Facility
        • 15 Research Themes

        • Cancer
        • Cardiovascular Medicine
        • Digital Health from Hospital to Home
        • Gene and Cell Therapy
        • Genomic Medicine
        • Imaging
        • Inflammation across Tissues
        • Life-saving Vaccines
        • Metabolic Experimental Medicine
        • Modernising Medical Microbiology and Big Infection Diagnostics
        • Musculoskeletal
        • Preventive Neurology
        • Respiratory Medicine
        • Surgical Innovation, Technology and Evaluation
        • Translational Data Science
  • Patient & Public Involvement
    • Getting involved with research
    • View and register for involvement opportunities
    • Patient & Public Groups
    • Patient and Public Involvement Advisory Group
    • Diversity in Research Group
    • Oxford Blood Group
    • Case Studies
    • PPIE Strategy
    • PPIE News
    • PPI Researcher Guidance
    • Researchers: Post a PPIE opportunity
  • Training Hub
    • Training Hub Overview
    • Clinical Academic Pathway
    • Internships
    • Preparatory Research Fellowships
    • Senior Research Fellowships
    • Research Training Bursaries
    • Doctoral Awards
    • Post-Doctoral Awards
    • Other funding
    • Leadership Training
    • Useful Links
    • Training and Education Resources
    • Upcoming Training Events & Courses
  • Industry
    • Collaborate with Oxford BRC
    • Who Do We Work With?
    • Events
    • Further Information and Additional Resources
    • Contacts for Industry
  • Videos
  • News
  • Events

News

You are here: Home > Cancer > Study investigating targeted drug delivery by focused ultrasound for pancreatic cancer opens

Study investigating targeted drug delivery by focused ultrasound for pancreatic cancer opens

1 July 2021 · Listed under Cancer, Surgical Innovation, Technology and Evaluation

University of Oxford researchers have begun recruitment to a study looking at whether chemotherapy medication can reach pancreatic tumours more effectively if encapsulated within a heat-sensitive shell and triggered with focused ultrasound.

Dr Laura Spiers working on a large ultrasound machine as part of the Pandox study

The Phase I PanDox study, which is supported by the NIHR Oxford Biomedical Research Centre (BRC), aims to learn if using thermosensitive liposomal doxorubicin and focused ultrasound (FUS) results in enhanced uptake of doxorubicin in pancreatic tumours, compared to doxorubicin alone.

PanDox is being carried out as a multi-disciplinary collaboration between the Oxford University Institute of Biomedical Engineering, the Oncology Clinical Trials Office (OCTO),  Oxford University Hospitals (OUH) NHS Foundation Trust and Celsion corporation, the manufacturer of the proprietary heat-activated liposomal encapsulation of doxorubicin ThermoDox used in the study.

The Oxford BRC’s Co-theme Lead for Cancer, Prof Mark Middleton (pictured left), Head of the university’s Department of Oncology at is the chief clinical investigator on the trial. Prof Constantin Coussios, Director of the Institute of Biomedical Engineering, is the lead scientific investigator.

The trial will recruit 18 patients; ThermoDox will be administered intravenously in 12 patients with a pancreatic ductal adenocarcinoma tumour that cannot be removed with surgery; the drug will then be released by gentle heating produced by focused ultrasound outside the body. This will be compared to conventional systemic delivery of doxorubicin without FUS in the other six patients.

As well as assessing whether uptake of doxorubicin is improved with FUS, the team will compare how the tumour responds to the treatment, examine the impact on patient symptoms and assess the safety of the treatment.

The study, which is expected to be completed by December 2022, is similar in design to Oxford’s 10-patient TARDOX study, which demonstrated that ThermoDox plus focused ultrasound increased doxorubicin tumour concentrations by up to 10-fold and enhanced nuclear drug uptake in patients with liver tumours. The findings were published in Lancet Oncology.

The lead oncology clinical research fellow on the PanDox study, Dr Laura Spiers of OUH, said: “Pancreatic cancer has a low five-year survival rate of approximately 10% and drug-based treatments remain less effective than in other cancers, in part due to the unique challenges presented by the stroma surrounding pancreatic tumours.

“Therefore, finding innovative and effective means of delivering high concentrations of anti-cancer agents such as doxorubicin may lead to a breakthrough for this difficult-to- treat cancer.” 

Dr Michael Gray, lead biomedical engineering research fellow, said: “Based on the patient-specific treatment planning approaches developed and validated during the TARDOX trial, PanDox will deliver focused ultrasound mild hyperthermia without either MR-based or invasive thermometry. The ultimate goal is to develop a cost-effective and scalable approach that can be rapidly deployed for the benefit of pancreatic patients.”

← Oxford wins government funding to evaluate prostate cancer detection system
Oxford Cancer launched at the University of Oxford →

Other news

News Categories

News by Month

See all news

Subscribe to the Oxford BRC Newsletter

Keep informed about the work of the Oxford BRC by subscribing to our Mailchimp e-newsletter. It is produced several times a year and delivers news and information about upcoming events straight to your inbox.

Subscribe Now

Oxford BRC on Social Media

  • Facebook
  • LinkedIn
  • Twitter
  • YouTube

Feedback

We’d love to hear your feedback. Please contact us at obrcenquiries@ouh.nhs.uk

  • Data Control and Privacy
  • Accessibility
  • Our Partners
  • Disclaimer
  • Contact

Copyright © 2023 NIHR Oxford Biomedical Research Centre