NIHR Oxford Biomedical Research Centre

Enabling translational research through partnership

MENUMENU
  • About
    • About the NIHR Oxford Biomedical Research Centre
    • Impact
    • Steering Committee
    • Promoting equality, diversity and inclusion in research
    • Current Vacancies
    • Stay in Touch
    • Contact Us
  • Research

        • Research Overview
        • Clinical Research Facility
        • Health Economics
        • Ethics in the NIHR Oxford BRC
        • Medical Statistics
        • Infections in Oxfordshire Database (IORD)
        • 15 Research Themes

        • Cancer
        • Cardiovascular Medicine
        • Digital Health from Hospital to Home
        • Gene and Cell Therapy
        • Genomic Medicine
        • Imaging
        • Inflammation across Tissues
        • Life-saving Vaccines
        • Metabolic Experimental Medicine
        • Modernising Medical Microbiology and Big Infection Diagnostics
        • Musculoskeletal
        • Preventive Neurology
        • Respiratory Medicine
        • Surgical Innovation, Technology and Evaluation
        • Translational Data Science
  • Patient and Public Involvement
    • For patients and the public
    • For researchers
    • More information
  • Training Hub
    • Training Hub Overview
    • Clinical Academic Pathway
    • Internships
    • Pre-Doctoral Research Fellowships
    • Senior Research Fellowships
    • Doctoral Awards
    • Post-Doctoral Awards
    • Pre-Application Programme
    • Other Funding
    • Leadership Training
    • Useful Links
    • Training and Education Resources
    • Upcoming Training Events & Courses
    • Success Stories
  • Industry and Partnerships
    • Collaborate with Oxford BRC
    • Who Do We Work With?
    • Events
    • Partnerships News
    • Further Information and Additional Resources
    • Contacts for Industry
  • Videos
  • News
  • Events

News

You are here: Home > Cancer > Small molecules found to play complex role in cancer metastasis

Small molecules found to play complex role in cancer metastasis

9 August 2011 · Listed under Cancer

While they may be small in size, a family of tiny molecules called microRNAs could potentially play a large role in the process of cancer metastasis, or the spread of cancer from one area of the body to another.

A team of researchers from The Cancer Institute of New Jersey (CINJ) and Princeton University, along with European colleagues, have revealed that miR-200s play a paradoxical role in the development of metastatic cancer. On the one hand, these microRNAs slow down the initial escape of cells from the primary breast tumor into blood circulation, impeding the spread of cancer at that point in the process. However when tumor cells do escape and then seek to colonize new organs such as the lungs, the same miR-200s facilitate that process. The study is described in the online edition of Nature Medicine that is out today. CINJ is a Center of Excellence of UMDNJ-Robert Wood Johnson Medical School.

The study has been recognized as a paradigm-shifting discovery in the field of metastasis research. Dr. Erik Thompson, Professor of Surgery at the St. Vincent’s Institute and University of Melbourne and President of the International Metastasis Research Society, wrote in an accompanying commentary in Nature Medicine that “this work takes several anomalies in our current understanding of EMT, builds a clinical context around them and provides a new paradigm that the miR-200 status in the original primary tumor, in a manner which exceeds E-cadherin expression and EMT status, predisposes the cancer to successful metastasis.”

This study was part-funded by the NIHR Biomedical Research Centre, Oxford and the author team included Prof Adrian Hill from the University of Oxford.  For the full article click here.

← Rare tumour’s ‘fingerprint’ used to develop cheap and reliable new test
Researchers trial new drug for women with hereditary breast and ovarian cancer →

Other news

News Categories

News by Month

See all news

Subscribe to the Oxford BRC Newsletter

Keep informed about the work of the Oxford BRC by subscribing to our Mailchimp e-newsletter. It is produced several times a year and delivers news and information about upcoming events straight to your inbox.

Subscribe Now

Feedback

We’d love to hear your feedback. Please contact us at obrcenquiries@ouh.nhs.uk

Oxford BRC on Social Media

  • Bluesky
  • Facebook
  • LinkedIn
  • YouTube
  • Data Control and Privacy
  • Accessibility
  • Our Partners
  • Disclaimer
  • Contact

Copyright © 2026 NIHR Oxford Biomedical Research Centre