NIHR Oxford Biomedical Research Centre

Enabling translational research through partnership

MENUMENU
  • About
    • About the NIHR Oxford Biomedical Research Centre
    • NIHR Oxford BRC impact
    • Steering Committee
    • Promoting equality, diversity and inclusion in research
    • Current Vacancies
    • Stay in Touch
    • Contact Us
  • Research

        • Research Overview
        • Clinical Research Facility
        • Health Economics
        • Ethics in the NIHR Oxford BRC
        • Medical Statistics
        • Infections in Oxfordshire Database (IORD)
        • 15 Research Themes

        • Cancer
        • Cardiovascular Medicine
        • Digital Health from Hospital to Home
        • Gene and Cell Therapy
        • Genomic Medicine
        • Imaging
        • Inflammation across Tissues
        • Life-saving Vaccines
        • Metabolic Experimental Medicine
        • Modernising Medical Microbiology and Big Infection Diagnostics
        • Musculoskeletal
        • Preventive Neurology
        • Respiratory Medicine
        • Surgical Innovation, Technology and Evaluation
        • Translational Data Science
  • Patient and Public Involvement
    • For patients and the public
    • For researchers
    • More information
  • Training Hub
    • Training Hub Overview
    • Clinical Academic Pathway
    • Internships
    • Pre-doctoral Research Fellowships
    • Senior Research Fellowships
    • Research Training Bursaries
    • Doctoral Awards
    • Post-Doctoral Awards
    • PARC Programme
    • Other funding
    • Leadership Training
    • Useful Links
    • Training and Education Resources
    • Upcoming Training Events & Courses
  • Industry
    • Collaborate with Oxford BRC
    • Who Do We Work With?
    • Events
    • Further Information and Additional Resources
    • Contacts for Industry
  • Videos
  • News
  • Events

** HEALTH RESEARCH SHOWCASE THURSDAY 29 MAY 2025 **

News

You are here: Home > Modernising Medical Microbiology and Big Infection Diagnostics > Partnership to speed up identification of COVID-19 variants

Partnership to speed up identification of COVID-19 variants

18 May 2021 · Listed under Modernising Medical Microbiology and Big Infection Diagnostics

Oxford University and the multinational computer technology corporation Oracle have joined forces to create a Global Pathogen Analysis System (GPAS) to help governments and medical communities identify and act on variants of the COVID-19 virus faster.

models of COVID-19 molecules
photo: NIAID

The emergence of more infectious variants is threatening to slow the global recovery and potentially thwart current vaccine immunity. The GPAS platform combines Oxford’s Scalable Pathogen Pipeline Platform (SP3) with Oracle’s Cloud Infrastructure (OCI).

“This powerful new tool will enable public health scientists in research establishments, public health agencies, healthcare services and diagnostic companies around the world to help further understanding of infectious diseases, starting with the coronavirus,” said Derrick Crook, Professor of Microbiology in the University’s Nuffield Department of Medicine and the NIHR Oxford Biomedical Research Centre Theme Lead for Antimicrobial Resistance and Modernising Microbiology.

“The Global Pathogen Analysis System will help to establish a global common standard for assembling and analysing this new virus, as well as other microbial threats to public health. This adds a new dimension in our ability to process pathogen data. We are excited to partner with Oracle to further our research using this cutting-edge technology platform.”

This initiative builds on the work of a Wellcome Trust-funded consortium including Public Health Wales, the University of Cardiff, and Public Health England.

First used for tuberculosis, SP3 has been repurposed to unify, standardise, analyse and compare sequence data of SARS-CoV-2, yielding annotated genomic sequences and identifying new variants and those of concern.

SP3’s processing capability has been enhanced with extensive new development work from Oracle, enabling high performance and security plus worldwide availability of the SP3 system in the Oracle Cloud. The SP3 system will now deliver comprehensive and standardised results of COVID-19 analyses within minutes of submission on an international scale. The results will be shared with countries around the globe in a secure environment.

“The opportunity of applying systematic examination for genetic variants in a range of pathogens will have major benefits for global public health. This programme, with Oracle as a partner, takes us a step closer to this goal,” said Sir John Bell, Regius Professor of Medicine at the University of Oxford.

Coupled with the extensive machine learning capabilities in the Oracle Cloud, collaborating scientists, researchers and governments worldwide can process, analyse, visualise and act on a wide collection of COVID-19 pathogen data for the first time. This includes identifying variants of interest and their potential impact on vaccine and treatment effectiveness.

For example, analytics dashboards in the system will show which specific strains are spreading more quickly than others and whether genetic features contribute to increased transmissibility and vaccine escape. Already, Oxford has processed half the world’s SARS-CoV-2 sequences, more than 500,000 in total.

“There is a critical need for global cooperation on genomic sequencing and examination of COVID-19 and other pathogens,” said Oracle Chairman and chief technology officer, Larry Ellison. “The enhanced SP3 system will establish a global standard for pathogen data gathering and analysis, thus enabling medical researchers to better understand the COVID-19 virus and other microbial threats to public health.”

The next step will be to extend this service to all pathogens while simultaneously collaborating with scientists from research establishments, public health agencies and private companies to ensure this work can inform decision-making on pandemic response strategies worldwide.

The platform will be free for researchers and non-profit organisations to use worldwide.

Dr Isabel Oliver, Director of the National Infection Service at Public Health England, noted: “This donation is a welcome boost to the ability to share genomic sequencing data with colleagues all across the world. Not only are strong genomic examination and widely-available data crucial to our collective efforts to combat the current pandemic, but they will have ongoing benefits to the response to other pathogens in the future.

“This could potentially have a far-reaching positive impact on international public health and global health security. As new variants of SARS-CoV-2 emerge around the world, it requires a cooperative global effort to respond effectively. Partnerships like this one are absolutely vital to ensuring that we can mitigate the impact of COVID-19 on the world’s population, and that we can continue to strengthen our ability to confront emerging threats in the years to come.”

← BRC researcher receives national infection prevention award
Latest data on immune response to COVID-19 reinforces need for vaccination →

Other news

News Categories

News by Month

See all news

Subscribe to the Oxford BRC Newsletter

Keep informed about the work of the Oxford BRC by subscribing to our Mailchimp e-newsletter. It is produced several times a year and delivers news and information about upcoming events straight to your inbox.

Subscribe Now

Feedback

We’d love to hear your feedback. Please contact us at obrcenquiries@ouh.nhs.uk

Oxford BRC on Social Media

  • Bluesky
  • Facebook
  • LinkedIn
  • Threads
  • Twitter
  • YouTube
  • Data Control and Privacy
  • Accessibility
  • Our Partners
  • Disclaimer
  • Contact

Copyright © 2025 NIHR Oxford Biomedical Research Centre