NIHR Oxford Biomedical Research Centre

Enabling translational research through partnership

MENUMENU
  • About
    • About the NIHR Oxford Biomedical Research Centre
    • NIHR Oxford BRC impact
    • Steering Committee
    • Promoting equality, diversity and inclusion in research
    • Current Vacancies
    • Stay in Touch
    • Contact Us
  • Research

        • Research Overview
        • Clinical Research Facility
        • Health Economics
        • Ethics in the NIHR Oxford BRC
        • Medical Statistics
        • Infections in Oxfordshire Database (IORD)
        • 15 Research Themes

        • Cancer
        • Cardiovascular Medicine
        • Digital Health from Hospital to Home
        • Gene and Cell Therapy
        • Genomic Medicine
        • Imaging
        • Inflammation across Tissues
        • Life-saving Vaccines
        • Metabolic Experimental Medicine
        • Modernising Medical Microbiology and Big Infection Diagnostics
        • Musculoskeletal
        • Preventive Neurology
        • Respiratory Medicine
        • Surgical Innovation, Technology and Evaluation
        • Translational Data Science
  • Patient and Public Involvement
    • For patients and the public
    • For researchers
    • More information
  • Training Hub
    • Training Hub Overview
    • Clinical Academic Pathway
    • Internships
    • Pre-doctoral Research Fellowships
    • Senior Research Fellowships
    • Research Training Bursaries
    • Doctoral Awards
    • Post-Doctoral Awards
    • PARC Programme
    • Other funding
    • Leadership Training
    • Useful Links
    • Training and Education Resources
    • Upcoming Training Events & Courses
  • Industry
    • Collaborate with Oxford BRC
    • Who Do We Work With?
    • Events
    • Further Information and Additional Resources
    • Contacts for Industry
  • Videos
  • News
  • Events

** HEALTH RESEARCH SHOWCASE THURSDAY 29 MAY 2025 **

News

You are here: Home > Genomic Medicine > Nanopore genetics breakthrough supported by Oxford BRC

Nanopore genetics breakthrough supported by Oxford BRC

2 December 2016 · Listed under Genomic Medicine

Oxford University’s Wellcome Trust Centre for Human Genetics (WTCHG) and the leading genome analytics company Genomics plc has announced the first sequencing and analysis of multiple human genomes using nanopore technology.

The announcement, made on Thursday, December 1, at the Oxford Nanopore Community Meeting in New York City, marks a major breakthrough in sequencing technology in opening up the potential of wide-scale whole-genome sequencing in humans using nanopore approaches.

Today’s announcement raises the possibility of a major change to both the economics and the science of DNA sequencing.

A key strength of nanopore sequencing is that reads can be much longer than is possible with other scalable sequencing technologies.

Longer reads offer significant advantages in human genome sequencing, enabling researchers to obtain good sequence data from certain biologically important regions of the genome which are difficult to study using existing sequencing technologies.  The long reads also appear to make it easier to detect large structural changes in individual genomes

Researchers at the WTCHG and Genomics plc used the MinION sequencer developed by Oxford Nanopore Technologies.

The portable MinION is a hand-held device about the size of a Mars bar, and is powered by a laptop computer to which it connects via a USB port.

It is available for $1,000 plus the cost of consumables.  While nanopore sequencing has been available for two years, it has previously only been practicable to apply it to relatively small genomes or regions of DNA, such as the much smaller genomes of viruses and bacteria.  Recent upgrades to the technology have now made it possible for researchers to conduct larger-scale studies such as sequencing complete human genomes by using multiple MinIONs.

The WTCHG and Genomics team sequenced a standard human reference sample, NA12878. In addition, in collaboration with the NIHR Oxford Biomedical Research Centre, they sequenced the DNA from a clinical patient.

Dr Rory Bowden, Deputy Head of High-Throughput Genomics at the WTCHG, and one of the leaders of the project, said: “It is a significant breakthrough to sequence multiple human genomes with nanopore technology.  Moving forward, the idea that there will be alternative technologies with new properties in this space will be very appealing to researchers and to clinical geneticists.”

Professor Michael Simpson, Co-Head of Science at Genomics plc, another project leader, said: “It is particularly encouraging to show that nanopore sequencing works for routine clinical samples, where the amount and quality of DNA available for sequencing may be constrained.  Further, in the clinical sample, the long reads provided by nanopore technology were critical in confirming the genetic changes responsible for the patient’s condition.”

Professor Peter Donnelly, Director of the WTCHG and a Founder and Director of Genomics plc, said: “The WTCHG were one of the pioneers of whole-genome sequencing in clinical medicine.  We are delighted to be able to work with nanopore technology to sequence and analyse a reference and a clinical human genome, and to explore the potential for large-scale human sequencing using nanopore approaches.”

← How baby’s genes influence birth weight and later life disease
Funding boost for genetics centre →

Other news

News Categories

News by Month

See all news

Subscribe to the Oxford BRC Newsletter

Keep informed about the work of the Oxford BRC by subscribing to our Mailchimp e-newsletter. It is produced several times a year and delivers news and information about upcoming events straight to your inbox.

Subscribe Now

Feedback

We’d love to hear your feedback. Please contact us at obrcenquiries@ouh.nhs.uk

Oxford BRC on Social Media

  • Bluesky
  • Facebook
  • LinkedIn
  • Threads
  • Twitter
  • YouTube
  • Data Control and Privacy
  • Accessibility
  • Our Partners
  • Disclaimer
  • Contact

Copyright © 2025 NIHR Oxford Biomedical Research Centre