NIHR Oxford Biomedical Research Centre

Enabling translational research through partnership

MENUMENU
  • About
    • About the NIHR Oxford Biomedical Research Centre
    • A Guide to What We Do
    • Activities during COVID-19
    • Strategic Partnership Board
    • Steering Committee
    • Promoting Equality, Diversity and Inclusion in Research
    • Current Vacancies
    • Contact Us
    • Stay in Touch
  • Research
        • OUR 20 RESEARCH THEMES

        • Antimicrobial Resistance and Modernising Microbiology
        • Cardiovascular
        • Clinical Informatics and Big Data
        • Diabetes and Metabolism
        • Gastroenterology and Mucosal Immunity
        • Genomic Medicine
        • Haematology and Stem Cells
        • Imaging
        • Molecular Diagnostics
        • Multi-Modal Cancer Therapies
        • Multi-Morbidity and Long-Term Conditions
        • Musculoskeletal
        • Neurological Conditions
        • Obesity, Diet and Lifestyle
        • Partnerships for Health, Wealth and Innovation
        • Respiratory
        • Stroke and Vascular Dementia
        • Surgical Innovation and Evaluation
        • Technology and Digital Health
        • Vaccines for Emerging and Endemic Diseases
        • Oxford Biomedical Research Centre activities during COVID-19
  • Patient & Public Involvement
    • Getting involved with research
    • Researcher Guidance
    • Post an opportunity for patient and public involvement
  • Training Hub
    • Training Hub Overview
    • Clinical Academic Pathway
    • Internships
    • Preparatory Research Fellowships
    • Senior Research Fellowships
    • Research Training Bursaries
    • Doctoral Awards
    • Post-Doctoral Awards
    • Other funding
    • Leadership Training
    • Useful Links
    • Training and Education Resources
    • Upcoming Training Events & Courses
  • Industry
    • Collaborate with Oxford BRC
    • What Can We Do For Your Organisation?
    • Who Do We Work With?
    • IP and Licensing
    • Contacts for Industry
  • Videos
  • News
  • Events

News

You are here: Home > Antimicrobial Resistance and Modernising Microbiology > Genetic sequencing offers same-day TB testing

Genetic sequencing offers same-day TB testing

15 March 2017 · Listed under Antimicrobial Resistance and Modernising Microbiology, Genomic Medicine

Researchers have for the first time shown that standard tuberculosis (TB) diagnostic tests can be replaced by a sub-24 hour genetic test applied to the TB bacteria in a patient’s sputum.

It currently takes up to two months to obtain the full diagnostic information for a patient with TB, as the bacteria grow very slowly in the laboratory. Scientists have sought for years to bypass this time-consuming step by examining the bacterial DNA directly from a sputum sample. However since most of the cells in sputum are human, it is difficult to spot the signal (TB DNA) within the noise (human and other bacteria) and even harder to find a method that might be affordable and practical across the world.

The new process, led by researchers from the University of Oxford and described in the Journal of Clinical Microbiology, rapidly processes the sputum to preferentially retain TB, using simple and relatively affordable materials, and then sequences and analyses the bacterial DNA. The Oxford team worked with researchers from the University of Nottingham, the Foundation for Medical Research, Mumbai, and Public Health England.

Until recently, DNA sequencing has required heavy machines and a well-equipped laboratory, which has limited its potential applications in the field. In this study, researchers have also shown that by using a new, real-time, handheld sequencing device (Oxford Nanopore MInION) they can achieve identical results, but with a process that might be applied anywhere in the world. In one example they achieved an effective turnaround time of 12.5 hours.

By using DNA sequencing, not only does this method detect drug-resistant TB bugs – vital information for the patient – but it also enables the tracking the geographical spread of strains, which is hugely valuable to public health workers, and something traditional tests cannot do.

TB is one of the top causes of death by infectious disease in the world, with 10.4 million cases of the disease in 2015, and 1.1 million deaths directly attributable to TB.

Professor Derrick Crook, NIHR Oxford Biomedical Research Centre said: “The use of whole genome sequencing to diagnose, detect drug resistance and very accurately type TB is a world first for any disease on this scale. By working closely with our partners, we are now able to use cutting edge science to effectively treat these patients with the right medicines quickly. We are immensely proud of the contribution this makes to the prospects of better treatment of TB globally. This approach will also increasingly be used for many other infectious diseases. Our ambition is to achieve this as quickly as possible so many infections can be better diagnosed and treated.”

The full paper, ‘Same-day diagnostic and surveillance data for tuberculosis via whole genome sequencing of direct respiratory samples’, can be read in the Journal of Clinical Microbiology (JCM).

This research was funded by the Wellcome Trust, Royal Society and the NIHR Oxford Biomedical Research Centre.

← Public Health Minister Visits Oxford Cancer Hospital ahead of World Cancer Day
New trial for blindness rewrites the genetic code →

News

  • Study highlights ongoing COVID-19 risk in some cancer patients despite vaccination 24 May 2022
  • BRC study outlines researchers training needs and barriers 20 May 2022
  • Three new Blood and Transplant Research Units created in Oxford 18 May 2022
See full news archive

News Categories

Month Archives

Subscribe to the Oxford BRC Newsletter

Keep informed about the work of the Oxford BRC by subscribing to our Mailchimp e-newsletter. It is produced several times a year and delivers news and information about upcoming events straight to your inbox.

Subscribe Now

Oxford BRC on Social Media

  • Facebook
  • LinkedIn
  • Twitter
  • YouTube

Feedback

We’d love to hear your feedback. Please contact us at obrcenquiries@ouh.nhs.uk

  • Sitemap
  • Data Control and Privacy
  • Accessibility
  • Our Partners
  • Disclaimer
  • Contact

Copyright © 2022 NIHR Oxford Biomedical Research Centre