NIHR Oxford Biomedical Research Centre

Enabling translational research through partnership

MENUMENU
  • About
    • About the NIHR Oxford Biomedical Research Centre
    • A Guide to What We Do
    • Activities during COVID-19
    • Strategic Partnership Board
    • Steering Committee
    • Promoting Equality, Diversity and Inclusion in Research
    • Current Vacancies
    • Contact Us
    • Stay in Touch
  • Research
        • OUR 20 RESEARCH THEMES

        • Antimicrobial Resistance and Modernising Microbiology
        • Cardiovascular
        • Clinical Informatics and Big Data
        • Diabetes and Metabolism
        • Gastroenterology and Mucosal Immunity
        • Genomic Medicine
        • Haematology and Stem Cells
        • Imaging
        • Molecular Diagnostics
        • Multi-Modal Cancer Therapies
        • Multi-Morbidity and Long-Term Conditions
        • Musculoskeletal
        • Neurological Conditions
        • Obesity, Diet and Lifestyle
        • Partnerships for Health, Wealth and Innovation
        • Respiratory
        • Stroke and Vascular Dementia
        • Surgical Innovation and Evaluation
        • Technology and Digital Health
        • Vaccines for Emerging and Endemic Diseases
        • Oxford Biomedical Research Centre activities during COVID-19
  • Patient & Public Involvement
    • Getting involved with research
    • Researcher Guidance
    • Post an opportunity for patient and public involvement
  • Training Hub
    • Training Hub Overview
    • Clinical Academic Pathway
    • Internships
    • Preparatory Research Fellowships
    • Senior Research Fellowships
    • Research Training Bursaries
    • Doctoral Awards
    • Post-Doctoral Awards
    • Other funding
    • Leadership Training
    • Useful Links
    • Training and Education Resources
    • Upcoming Training Events & Courses
  • Industry
    • Collaborate with Oxford BRC
    • What Can We Do For Your Organisation?
    • Who Do We Work With?
    • IP and Licensing
    • Contacts for Industry
  • Videos
  • News
  • Events

News

You are here: Home > Neurological Conditions > Electrical brain stimulation could support stroke recovery

Electrical brain stimulation could support stroke recovery

16 March 2016 · Listed under Neurological Conditions, Stroke and Vascular Dementia

Applying an electric current to the brain can help recovery from stroke, Oxford University researchers at the John Radcliffe Hospital have found.

A team from Oxford’s Nuffield Department of Clinical Neurosciences, led by Professor Heidi Johansen-Berg and Dr Charlotte Stagg, studied the use of transcranial direct current stimulation (tDCS) to support rehabilitation training.

The technique involves placing electrodes on the scalp to pass a constant low current through a particular area of the brain.

In this case, the team – at the Oxford Centre for Functional MRI of the Brain at the hospital – used a variant called ipsilesional anodal tDCS, where a positive (anodal) current is applied on the side of the brain where damage has occurred.

Anodal stimulation has previously been shown to increase the learning of motor skills in healthy people. The hope was that this effect could also be demonstrated in stroke patients, using tDCS to reinforce training that helps patients relearn how to use their body.

Professor Heidi Johansen-Berg said: ‘For stroke patients, longer and more intensive training leads to greater recovery. However, cost and staff availability limit what can be provided. That means that there is increasing interest in therapies that can be used to boost the effects of training.’

The study included twenty-four volunteers who had had a stroke affecting their hand and arm function, split into two groups. Both groups were given nine days of motor training. One group had tDCS during the training sessions, while the other group acted as a control: they were fitted with electrodes but did not receive tDCS.

Before, and at various times up to three months after the training, the volunteers’ motor skills were assessed using established clinical measures to see how much they had improved.

Funders for the study included the NIHR Oxford Biomedical Research Centre, a partnership between the University and Oxford University Hospitals NHS Foundation Trust to fund and support medical research.

Professor Johansen-Berg said: “The assessments before the training were used to establish a baseline score for motor skills. Further assessments could then be used to determine what improvement there was above that baseline.

“Three months after training, the group that had received tDCS had improved more on our clinical measures than those in the control group. This showed that the patients who had received tDCS were better able to use their hands and arms for movements such as lifting, reaching and grasping objects.”

MRI scanning also showed that those who had had tDCS had more activity in the relevant brain areas for motor skills than the control group.

Study volunteer Jan said: “The training was exhausting – like being in the gym every day, but it was huge fun.  Even after the first session I felt as if I could do more, even though I was knackered.  That made me go back every day, and I found it easier and easier. [The stimulation] didn’t hurt – more like a mild tingle or a static electric shock right on the top of my head.  The worst part was that my head itched afterwards!”

She added: “I have definitely improved and benefited.  People who haven’t seen me say ‘wow – you can move better now’.  It definitely helped.  I’m just sorry I can’t continue with it. It was so nice to meet a team who had such positive attitudes and who told me it was not too late to improve.”

The research team conclude that there is positive evidence for the use of tDCS to aid stroke recovery but caution that the technique must be proved to have long term benefits not only in clinical measurements but also in the ability to carry out tasks important to daily life. Larger studies, they say, will be needed before this approach could enter routine clinical care.

← Blind woman’s joy as she reads the time thanks to “bionic eye”
New tool to improve blood pressure measurement →

News

  • Study highlights ongoing COVID-19 risk in some cancer patients despite vaccination 24 May 2022
  • BRC study outlines researchers training needs and barriers 20 May 2022
  • Three new Blood and Transplant Research Units created in Oxford 18 May 2022
See full news archive

News Categories

Month Archives

Subscribe to the Oxford BRC Newsletter

Keep informed about the work of the Oxford BRC by subscribing to our Mailchimp e-newsletter. It is produced several times a year and delivers news and information about upcoming events straight to your inbox.

Subscribe Now

Oxford BRC on Social Media

  • Facebook
  • LinkedIn
  • Twitter
  • YouTube

Feedback

We’d love to hear your feedback. Please contact us at obrcenquiries@ouh.nhs.uk

  • Sitemap
  • Data Control and Privacy
  • Accessibility
  • Our Partners
  • Disclaimer
  • Contact

Copyright © 2022 NIHR Oxford Biomedical Research Centre