

BRC Diabetes & Metabolism Theme

<https://oxfordbrc.nihr.ac.uk/research-themes-overview/diabetes-and-metabolism/>

The long-term primary strategic aims of the **Diabetes & Metabolism Theme's** research are **(i)** understanding, preserving and restoring normal pancreatic islet and liver function; **(ii)** identifying biochemical, genetic and genomic biomarkers for precision medicine; **(iii)** evaluating novel therapeutics and devices to restore islet and liver function and **(iv)** developing translational pipelines to rapidly assimilate this knowledge into integrated clinical care pathways. Four closely linked inter-disciplinary subthemes will achieve our aims using BRC-supported core infrastructure.

Subtheme 1. Translational Physiology, Therapeutics and Medical Innovation

Mechanistic and interventional studies will be performed in adults and children to characterise metabolic dysfunction related to impaired islet function (*Gloyn, Rorsman, McCarthy, Todd*), insulin resistance (*Karpe, McCarthy, Tomlinson, Gloyn*), non-alcoholic fatty liver disease (NAFLD) (*Hodson, Neubauer, Tomlinson*), and altered immunity (*Todd, Johnson, Besser, Owen*). The **Oxford BioResource** and the **OCDEM CRU** will provide the crucial BRC-supported infrastructure to enable in-depth physiological analysis of human subjects recruited on the basis of genotype and/or phenotype using sophisticated, system-specific approaches. These studies will typically provide the translational perspective for large separately-resourced, international, discovery projects and will benefit from collaborations with all 4 cross-cutting themes.

Subtheme 2. Translational Islet and Metabolic Tissue Biology

We will exploit our unique opportunities offered by integrating local access to human islets with world-leading expertise in islet biology (*Rorsman, Gloyn*) and genomics (*McCarthy, Gloyn, Todd*) to: define molecular mechanisms for islet dysfunction; repurpose small molecules to improve islet function, and compare genetic, genomic and electrophysiological signatures of human islet-cells with alternative sources for clinical islet-cell replacement. A major focus will be the development of pharmacological approaches to restore normal insulin and glucagon secretion (*Rorsman*). We will use *in vitro* liver cell models to identify mechanisms driving NAFLD progression and potential therapeutic targets (*Tomlinson, Hodson*).

Subtheme 3. Pancreas and Islet-Cell Transplantation

Oxford, with the world's most active clinical service (>800 patients over 12 years), has integrated programs in solid organ and islet pancreas transplantation and is uniquely placed to develop beta-cell replacement therapies. The subtheme also co-leads a national project to identify reliable clinical, histological, radiological, biochemical and proteomic markers that identify viable/non-viable organs: Two thirds of UK donor pancreases meeting national criteria are declined/discard because of fears of post-operative pancreatitis or non-function. This will be supplemented with analyses and outcome data from the Oxford-based QUOD biobank (*Friend, Ploeg, Johnson, Gloyn*).

Subtheme 4. Service Innovation and Evaluation

This subtheme will evaluate the impact of novel service models in diabetes care. The work will include modelling and analysis of clinical outcomes, research into patient experience and self-management, economic evaluation and creation of an environment where research and innovation flourish within routine clinical pathways. The theme also manages the Patient Public Involvement meetings (*Owen, Rea, Tan, Lumb, Fitzpatrick, Sharpe*).